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▶ La programmation dynamique est une technique permettant de
résoudre certaines classes de problèmes de calcul de minimisation.

▶ Un problème de minimisation consiste à trouver :

min
x∈E

f (x)

avec E un ensemble « complexe » de grand cardinal et f une fonction.
▶ On ne peut pas balayer simplement les éléments de E .

▶ On va présenter deux exemples où la programmation dynamique
s’applique, en essayant de dégager une structure générale.

Sylvain Pelletier Programmation dynamique PSI - LMSC 2 / 40



Description du problème

▶ On imagine un système qui peut être dans p états possibles = un
entier de [[0, p − 1]].

▶ On étudie ce système au temps t0, . . . , tN . Entre deux temps
consécutifs, le système peut changer d’état. On a donc N transitions.

▶ Le coût de transition dépend du temps et de l’état de départ et
d’arrivée.
On note f (k, x , y) le coût pour passer de l’état x à l’état y entre le
temps tk et le temps tk+1.

▶ Il est possible que f (k, x , x) > 0, autrement dit que rester dans le
même état x ait un coût.

Le problème de minimisation consiste à trouver une suite d’états
x0, x1, . . . , xN qui minimise le coût total :

C(x0, . . . , xN) =
N−1∑
i=0

f (i , xi , xi+1)
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On voit deux chemins minimaux de coût 9 : (1,2,2,0) et (1,2,0,2).
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▶ À chaque transitions on a p2

flèches , donc Np2 données.
▶ On cherche le coût minimal et

un chemin de coût minimal
dans ce graphe,
c’est-à-dire :

min
(x0,...,xn)∈[[0,p−1]]N+1

C(x0, . . . , xn)

▶ Il y a pN+1 chemins (x0, . . . , xn) possibles, c’est fini mais trop gros
pour du temps de calcul raisonnable.

▶ On cherche une structure de sous-problème optimal pour permettre
un calcul plus rapide.
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propriété de sous-problème optimal

▶ Considérons pour k ∈ [[0, N]] et x ∈ [[0, p − 1]] :

ck(x) = min
x0,...,xk−1∈[[0,p−1]]k

(k−2∑
i=0

f (i , xi , xi+1) + f (k − 1, xk−1, x)
)

= min
x0,...,xk−1∈[[0,p−1]]k

C(x0, . . . , xk−1, x)

▶ C’est le coût du chemin minimal pour arriver au temps k à l’état x .
▶ Le coût cherché est min

x∈[[0,p−1]]
cN(x).

▶ C’est le coût minimal des chemins minimaux de longueur N.
Autrement dit, on regarde pour tous les états d’arrivée, lequel est
atteint avec un chemin minimal le moins coûteux.
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Équation de Bellman

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Donc :
▶ c0(x) = 0 pour tout x (c’est le coût pour partir du point x).
▶ On a une relation dite équation de Bellman :

∀k ∈ [[1, N]] , ∀x ∈ [[0, p − 1]] ,

ck(x) = min
y∈[[0,p−1]]

(ck−1(y) + f (k − 1, y , x))

▶ La programmation dynamique consiste à exploiter ce type de relation
de sous-problèmes optimaux.

▶ On voir que l’on peut calculer les ck(x) par une boucle for en k ou
par récursivité.

▶ Au concours : il faut être capable de justifier cette relation et d’écrire
le programme correspondant.

Sylvain Pelletier Programmation dynamique PSI - LMSC 7 / 40



Équation de Bellman

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Donc :
▶ c0(x) = 0 pour tout x (c’est le coût pour partir du point x).
▶ On a une relation dite équation de Bellman :

∀k ∈ [[1, N]] , ∀x ∈ [[0, p − 1]] ,

ck(x) = min
y∈[[0,p−1]]

(ck−1(y) + f (k − 1, y , x))

▶ La programmation dynamique consiste à exploiter ce type de relation
de sous-problèmes optimaux.

▶ On voir que l’on peut calculer les ck(x) par une boucle for en k ou
par récursivité.

▶ Au concours : il faut être capable de justifier cette relation et d’écrire
le programme correspondant.

Sylvain Pelletier Programmation dynamique PSI - LMSC 7 / 40



Équation de Bellman

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Donc :
▶ c0(x) = 0 pour tout x (c’est le coût pour partir du point x).
▶ On a une relation dite équation de Bellman :

∀k ∈ [[1, N]] , ∀x ∈ [[0, p − 1]] ,

ck(x) = min
y∈[[0,p−1]]

(ck−1(y) + f (k − 1, y , x))

▶ La programmation dynamique consiste à exploiter ce type de relation
de sous-problèmes optimaux.

▶ On voir que l’on peut calculer les ck(x) par une boucle for en k ou
par récursivité.

▶ Au concours : il faut être capable de justifier cette relation et d’écrire
le programme correspondant.

Sylvain Pelletier Programmation dynamique PSI - LMSC 7 / 40



Équation de Bellman

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Donc :
▶ c0(x) = 0 pour tout x (c’est le coût pour partir du point x).
▶ On a une relation dite équation de Bellman :

∀k ∈ [[1, N]] , ∀x ∈ [[0, p − 1]] ,

ck(x) = min
y∈[[0,p−1]]

(ck−1(y) + f (k − 1, y , x))

▶ La programmation dynamique consiste à exploiter ce type de relation
de sous-problèmes optimaux.

▶ On voir que l’on peut calculer les ck(x) par une boucle for en k ou
par récursivité.

▶ Au concours : il faut être capable de justifier cette relation et d’écrire
le programme correspondant.

Sylvain Pelletier Programmation dynamique PSI - LMSC 7 / 40



Équation de Bellman

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Donc :
▶ c0(x) = 0 pour tout x (c’est le coût pour partir du point x).
▶ On a une relation dite équation de Bellman :

∀k ∈ [[1, N]] , ∀x ∈ [[0, p − 1]] ,

ck(x) = min
y∈[[0,p−1]]

(ck−1(y) + f (k − 1, y , x))

▶ La programmation dynamique consiste à exploiter ce type de relation
de sous-problèmes optimaux.

▶ On voir que l’on peut calculer les ck(x) par une boucle for en k ou
par récursivité.

▶ Au concours : il faut être capable de justifier cette relation et d’écrire
le programme correspondant.

Sylvain Pelletier Programmation dynamique PSI - LMSC 7 / 40



Justification de l’équation de Bellman
ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Montrons :

ck(x) = min
y∈[[0,p−1]]

(ck−1(y) + f (k − 1, y , x))

▶ Il faut justifier :
∀y ∈ [[0, p − 1]] , ck(x) ⩽ ck−1(y) + f (k − 1, y , x)

et ∃y ∈ [[0, p − 1]] ck(x) = ck−1(y) + f (k − 1, y , x)
▶ La première ligne signifie : quelque soit l’état y du système au temps

k − 1 (prédécesseur de x), le coût minimal pour arriver à x au temps
k est inférieur ou égal au coût pour arriver à y suivi du coût de la
transition de y vers x .

▶ Le deuxième ligne signifie : le chemin minimal pour arriver à x était
déjà optimal pour arriver à y .

▶ Non seulement on obtient ainsi la valeur de ck(x) mais aussi la valeur
d’un meilleur prédécesseur de x au temps k − 1, c’est l’un des y qui
réalise le minimum.
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Justification de l’équation de Bellman 1/2

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Montrons :

∀y ∈ [[0, p − 1]] , ck(x) ⩽ ck−1(y) + f (k − 1, y , x)

▶ Soit y ∈ [[0, p − 1]], alors ck−1(y) est le coût d’un chemin minimal
(x0, . . . , xk−2, y) qui arrive au temps k − 1 en y .

▶ Le chemin (x0, . . . , xk−2, y , x) arrive donc au temps k en x .
▶ Son coût est :

k−3∑
i=1

f (i , xi , xi+1) + f (k − 2, xk−2, y) + f (k − 1, y , x)

=C(x0, . . . , xk−2, y) + f (k − 1, y , x)
=ck−1(y) + f (k − 1, y , x)

▶ ce coût est inférieur au minimal donc ck(x) ⩽ ck−1(y) + f (k − 1, y , x)
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Justification de l’équation de Bellman 2/2

ck(x) est le coût du chemin minimal pour arriver au temps k à l’état x .
Montrons :

∃y ∈ [[0, p − 1]] ck(x) = ck−1(y) + f (k − 1, y , x)

▶ considérons un chemin minimal qui arrive à x au temps k et on pose
y le prédécesseur de x . Ce chemin minimal est donc noté
(x0, . . . , xk−2, y , x).

▶ Le coût de chemin est donc :

ck(x) =
k−3∑
i=1

f (i , xi , xi+1) + f (k − 2, xk−2, y) + f (k − 1, y , x)

=C(x0, . . . , xk−2, y) + f (k − 1, y , x)
▶ Il faut donc montrer que : C(x0, . . . , xk−2, y) = ck−1(y), c’est-à-dire

que (x0, . . . , xk−2, y) est un chemin minimal pour arriver en y au
temps k − 1.
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c0(x) = 0 et pour k ⩾ 1 ck(x) = miny∈[[0,p−1]](ck−1(y) + f (k − 1, y , x))
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c0(x) = 0 et pour k ⩾ 1 ck(x) = miny∈[[0,p−1]](ck−1(y) + f (k − 1, y , x))
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t0 t1 t2 t3
état 0 c0(0) = 0 c1(0) = 1 (0) c2(0) = 6 (2) c3(0) = 9 (2)
état 1 c1(0) = 0 c1(1) = 5 (0) c2(1) = 6 (1) c3(1) = 12 (1)
état 2 c2(0) = 0 c1(2) = 3 (1) c2(2) = 7 (2) c3(2) = 9(0)

▶ On peut donc retrouver le coût du chemin minimal (9) et en
remontant les valeur qui réalisent ce minimum, on peut retrouver un
chemin minimal (1,2,2,0) ou (1,2,0,2).

▶ On peut coder de deux manières : par boucle for ou par récursivité.
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Calcul de chemin minimal de bas en haut

L’algorithme consiste donc à calculer la valeur de ck(x) pour chaque temps
k et chaque état x , et à conserver le meilleur prédécesseur à x au temps k

▶ on initialise les valeurs c0(x) à 0.
▶ pour chaque temps k et chaque état x on cherche l’état y qui

minimise ck−1(y) + f (k − 1, y , x).
▶ La valeur de ce minimum donne la valeur de ck(x), l’indice de ce

minimum (ie le y qui réalise ce minimum) est un des meilleurs
prédécesseurs à x au temps k.

▶ Une fois que tout cela est fait, on calcule le meilleur état d’arrivée, ie
le x qui minimise cN(x).
Cet état est la dernière étape de notre chemin, ie xN .

▶ On considère le prédécesseur de xN qui est donc xN−1, puis on
remonte ainsi, jusqu’à x0. On peut ainsi reconstruire le chemin
(x0, . . . , xN) de coût minimal.
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▶ On utilise une liste C de longueur N + 1, de listes de longueur p, de
couple (cout, etat).

▶ Ainsi, C[k ][ x] est donc un couple (cout, etat), avec cout un float
et etat un int. C’est le coût pour arriver en x au temps k ainsi que le
prédécesseur de x au temps k − 1.

▶ L’instruction :
[ C [ k −1] [ y ] [ 0 ] + f ( k−1, y , x ) f o r y i n range ( p ) ]

permet de construire la liste des réels (ck−1(y) + f (k − 1, y , x)) pour
tous les états y .

▶ C’est sur cette liste que l’on calcule le minimum (valeur de ck(x)) et
l’indice du minimum (le meilleur prédécesseur de x).

▶ On code à part une fonction minEtindmin qui prend en entrée une
liste de float et qui revoir un couple ( valeur , indice ) du minimum
de cette liste.

▶ Le chemin est stockée sous la forme d’une liste (x0, . . . , xN). On
construit cette liste en partant de la fin.
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▶ Pour construire la liste C :
C = [ [ [ 0 , None ] f o r i i n range ( p ) ] f o r j i n range (N+1)]
f o r k i n range (1 ,N+1):

f o r x i n range ( p ) :
C [ k ] [ x ] = minEt indmin (

[ C [ k −1] [ y ] [ 0 ] + f ( k−1, y , x ) f o r y i n range ( p ) ] )

▶ Pour calculer le coût minimal et le point d’arrivée :
cout , xN = minEt indmin ( [ C [N ] [ x ] [ 0 ] f o r x i n range ( p ) ] )

▶ Pour reconstruire le chemin :
chemin = [ None ] ∗ (N+1)
chemin [N] = xN
f o r i i n range (N−1, −1, −1):

chemin [ i ] = C [ i +1] [ chemin [ i + 1 ] ] [ 1 ]
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Complexité de l’algorithme :
▶ Pour chaque k dans [[1, N]], Pour chaque x dans [[0, p − 1]],
▶ on calcule la liste :

[ C [ k −1] [ y ] [ 0 ] + f ( k−1, y , x ) f o r y i n range ( p ) ]

ce qui fait p appel à f et p additions. Donc 2p opérations.
▶ on calcule le minimum, et l’indice du minimum de cette liste de

longueur p, ce qui fait p comparaisons (rappel : une comparaison
est beaucoup plus rapide qu’une addition).

▶ il reste un dernier minimum à calculer soit p comparaison.
Cela fait donc Θ(2 × p2 × N) opérations au lieu de pN+1

Avec la méthode de programmation que l’on a mis en place ici, le coût en
mémoire est élevé : on stocke un tableau de p × N couples. On peut
éventuellement, diminuer ce coût en écrasant à chaque itération les valeurs
de ck(x).
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Calcul récursif du chemin minimal

▶ L’équation de Bellman ck(x) = miny∈[[0,p−1]](ck−1(y) + f (k − 1, y , x))
peut aussi se programmer de manière récursive.

▶ Cas trivial : k = 0 on renvoie [0, None], et si k > 0, on calcule la liste
des (ck−1(y) + f (k − 1, y , x)), on renvoie le minimum (le coût) et
l’indice du minimum (le prédécesseur).

▶ Pour calculer ck(x), on a besoin de tous les ck−1(y), le nombre
d’appels à la fonction récursive est trop important

▶ On refait sans cesse les mêmes calculs ! Il faut garder en mémoire les
résultats.
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Retour sur la récursivité

▶ Une fonction récursive est une fonction qui s’appelle elle-même.
▶ Le principe est d’utiliser la récurrence : on sait résoudre le problème

lorsque n = 0 (cas trivial), pour résoudre le problème pour un n fixé,
on appelle la fonction pour n − 1.

▶ Cela donne du code très compact et permet d’écrire facilement du
code complexe.

▶ On prouve la terminaison et la correction d’un programme récursif en
écrivant : P(n) :« sur l’entrée n le programme se termine et donne le
bon résultat »

d e f f a c t ( n ) :
i f n == 0 :

r e t u r n 1
r e t u r n f a c t ( n−1)
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Exemple pour les tours de Hanoi
d e f hano iRec ( n , D, A, I ) :

"""
e n t r é e : n = i n t = nbr de d i s q u e s à dé p l a c e r

D = i n t = i n d i c e de l a t o u r de dé p a r t
A = i n t = a r r i v é e
I = i n t = in t e rm é d i a i r e

s o r t i i e : l i s t e de c o u p l e de i n t de l a forme ( i , j )
l i s t e des dé p lacement s à e f f e c t u e r

"""
i f n == 1 :

r e t u r n [ [D,A] ]
r e t u r n hano iRec ( n−1, D, I , A) + [ [ D,A ] ] + hano iRec ( n−1, I , A , D)

d e f r e soud ( n ) :
"""
e n t r é e : n = i n t = nbr de d i s q u e s à dé p l a c e r
s o r t i e : l i s t e de c o u p l e de i n t de l a forme ( i , j )

l i s t e des dé p lacement s à e f f e c t u e r
"""
r e t u r n hano iRec ( n , 1 , 3 , 2)
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Exemple pour le tri fusion
d e f t r i ( L ) :

"""
e n t r é e : L = l i s t = l i s t e à t r i e r
s o r t i e : L = l a l i s t e t r i é e
"""
i f l e n ( L ) <= 1 :

r e t u r n L

# t r i des deux " m o i t i é s " de l i s t e
m = l e n ( L ) // 2
L1 = t r i ( L [ :m] )
L2 = t r i ( L [m: ] )

r e t u r n f u s i o n ( L1 , L2 )
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Nombres d’appels récursifs

d e f f i b b o ( n ) :
i f n == 0 :

r e t u r n 1
i f n == 1 :

r e t u r n 1
r e t u r n f i b b o ( n−1) + f i b b o ( n−2)

▶ On fait trop d’appels récursifs !
▶ Il faut garder en mémoire les valeurs fibbo(n), on parle de

mémoïsation.
▶ Un dictionnaire est très utile pour cela : si la valeur existe, on la

renvoie, sinon on la calcule et la stocke.
▶ Cette technique est à connaître !
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Calcul récursif du chemin minimal

▶ Équation de Bellman ck(x) = miny∈[[0,p−1]](ck−1(y) + f (k − 1, y , x))
peut aussi se programmer de manière récursive avec la mémoïsation.

▶ On utilise donc un dictionnaire C indexé sur les tuples (k, x), le
dictionnaire contient le couple (cout, etat) .

▶ On crée une fonction récursive calculeC qui modifie le dictionnaire
et renvoie le couple C[(k,x)] .

▶ Il faut déterminer le meilleur état d’arrivée, ie le x qui minimise
cN(x), On appelle cette fonction récursive pour calculer C[(N,x)] pour
tous les x .

▶ Cet état est la dernière étape de notre chemin, ie xN . Puis de
reconstruire le chemin (x0, . . . , xN) de coût minimal.
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Fonction récursive :
C = {}
f o r x i n range ( p ) :

C [ ( 0 , x ) ] = [ 0 , None ]

d e f c a l c u l e C ( k , x ) :
"""
f o n c t i o n r é c u r s i v e qu i r e m p l i t l e d i c t i o n n a i r e
"""
i f ( k , x ) not i n C :

C [ ( k , x ) ] = minEt indmin ( [ c a l c u l e C ( k−1,y ) [ 0 ] + f ( k−1, y , x ) f o r y i n range ( p ) ] )
r e t u r n C [ ( k , x ) ]

Appel de la fonction récursive et calcul du chemin :
# l ’ a p p e l à l a f o n c t i o n r é c u r s i v e se f a i t i c i :
f o r y i n range ( p ) :

c a l c u l e C ( p , y )

cout , xN = minEt indmin ( [ C [ ( p , y ) ] [ 0 ] f o r y i n range (N) ] )

# on r e c o n s t r u i t l e chemin complet
chemin = [ None ] ∗ (N+1)
chemin [N] = xN
f o r i i n range (N−1, −1, −1):

chemin [ i ] = C [ ( i +1, chemin [ i +1]) ] [ 1 ]
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On peut dégager une structure de problèmes pouvant être résolus par
programmation dynamique :
▶ Il s’agit de problèmes de minimisation : On a un ensemble E fini mais

très grand et on cherche la valeur de minx∈E f (x) et le x qui réalise le
minimum. La fonction f est connue.

▶ On a plusieurs sous-problèmes plus petits.
▶ Le problème initial est le plus gros des sous-problèmes (le dernier), le

plus petit des sous-problème admet une solution triviale.
▶ chevauchement des sous-problème : Ces sous-problèmes sont

entremêlés.
▶ Un sous-problème d’une taille donné se fait facilement en utilisant les

solutions des sous problèmes d’une taille plus petite. Cela se traduit
par une équation de Bellman que l’on peut voir comme une formule
de récurrence.
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solutions des sous problèmes d’une taille plus petite. Cela se traduit
par une équation de Bellman que l’on peut voir comme une formule
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On peut dégager une structure de problèmes pouvant être résolus par
programmation dynamique :
▶ Il s’agit de problèmes de minimisation : On a un ensemble E fini mais

très grand et on cherche la valeur de minx∈E f (x) et le x qui réalise le
minimum. La fonction f est connue.

▶ On a plusieurs sous-problèmes plus petits.
▶ Le problème initial est le plus gros des sous-problèmes (le dernier), le

plus petit des sous-problème admet une solution triviale.
▶ chevauchement des sous-problème : Ces sous-problèmes sont

entremêlés.
▶ Un sous-problème d’une taille donné se fait facilement en utilisant les

solutions des sous problèmes d’une taille plus petite. Cela se traduit
par une équation de Bellman que l’on peut voir comme une formule
de récurrence.
Dans notre exemple : ck(x) = miny∈[[0,p−1]](ck−1(y) + f (k − 1, y , x)).
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Programmation dynamique

On peut utiliser la programmation dynamique de deux manières :
▶ Soit par programmation itérative (approche bas en haut) : on part du

sous-problème le plus petit et on utilise une boucle for pour résoudre
des problèmes de plus en plus gros.

▶ La programmation itérative est surtout utile lorsque résoudre le sous
problème de taille k nécessite la résolution du problème de taille k − 1

▶ soit par programmation récursive : on utilise des appels récursifs.
On part alors du problème le plus gros et on le découpe en
sous-problème plus petit, jusqu’au problème trivial.
Pour éviter les trop nombreux appels récursifs, on utilise la
mémoïsation : on stocke les valeurs calculées dans un dictionnaire.

▶ La programmation récursive est surtout utile lorsqu’il n’est pas
nécessaire de résoudre tous les sous-problème.
Exemple : quand le problème initial est de taille n et nécessite de
résoudre les problèmes pour tous les diviseurs de n.
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Deuxième exemple : algorithme de Roy-Floyd-Warshall

▶ On considère un graphe valué dont les sommets sont les entiers
[[0, n − 1]]. Il est représenté par sa matrice d’adjacence W .

Wi ,j =
{

+∞ si i n’est pas relié à j
wi ,j longueur de l’arc de i vers j

▶ Soit i et j deux sommets. Un chemin qui relie i à j est une suite finie
de sommets reliés qui commence à i et finit à j . Autrement dit, c’est
une liste

p = (i0, . . . , il) avec i0 = i et il = j
avec ∀s ∈ [[0, l − 1]] , wis ,is+1 ̸= +∞ (chaque sommet est bien relié au
suivant).
On note de plus Ci ,j l’ensemble des chemins de i à j .

La longueur du chemin p = (i0, . . . , il) est :L(p) =
l−1∑
s=0

wis ,is+1 C’est la

somme des longueurs des arrêtes.
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▶ On considère un graphe valué dont les sommets sont les entiers
[[0, n − 1]]. Il est représenté par sa matrice d’adjacence W .

▶ Soit i et j deux sommets. Un chemin qui relie i à j est une suite finie
de sommets reliés qui commence à i et finit à j . Noté :

p = (i0, . . . , il) avec i0 = i et il = j
On note de plus Ci ,j l’ensemble des chemins de i à j .

La longueur du chemin p = (i0, . . . , il) est :L(p) =
l−1∑
s=0

wis ,is+1

▶ On s’intéresse à la recherche du chemin le plus court entre deux
sommets i et j , ie la longueur la plus faible.
On cherche donc : L(i , j) = min

p∈Ci,j
L(p)

▶ Comme pour l’algorithme de Dijkstra mais pour tous les points de
départ i et d’arrivée j .
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Matrice d’adjacence :
W = a r r a y (

[ [ INF , 1 , 2 , INF ] ,
[ 1 , INF , 2 , INF ] ,
[ 3 , INF , INF , 1 ] ,
[ INF , 2 , 1 , INF ] ] )

Graphe :

0

1

2

3

1

2

1

2

3

1
2

1
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Matrice d’adjacence :
W = a r r a y (

[ [ INF , 1 , 2 , INF ] ,
[ 1 , INF , 2 , INF ] ,
[ 3 , INF , INF , 1 ] ,
[ INF , 2 , 1 , INF ] ] )

Graphe :

0

1

2

3

1

2

1

2

3

1
2

1

Distances minimales :
0 1 2 3

0 2 1 2 3
1 1 2 2 3
2 3 3 2 1
3 3 2 1 2

Chemins minimaux :
0 1 2 3

0 [0, 1, 0] [0, 1] [0, 2] [0, 2, 3]
1 [1, 0] [1, 0, 1] [1, 2] [1, 2, 3]
2 [2, 0] [2, 3, 1] [2, 3, 2] [2, 3]
3 [3, 1, 0] [3, 1] [3, 2] [3, 2, 3]
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Matrice d’adjacence :
W = a r r a y (

[ [ INF , INF , 2 , INF , 1 , INF , INF ] ,
[ 1 , INF , INF , INF , INF , INF , 1 ] ,
[ INF , 2 , INF , INF , 1 , INF , 1 ] ,
[ INF , INF , INF , INF , 1 , INF , INF ] ,
[ INF , INF , 1 , INF , INF , INF , INF ] ,
[ INF , INF , 1 , INF , INF , INF , INF ] ,
[ 1 , INF , INF , INF , INF , 1 , INF ]
] )

Graphe :

0

1
2

3

4

5
6

2

1

1

1

2

1

1

1

1

1

1

1
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Matrice d’adjacence :
W = a r r a y (

[ [ INF , INF , 2 , INF , 1 , INF , INF ] ,
[ 1 , INF , INF , INF , INF , INF , 1 ] ,
[ INF , 2 , INF , INF , 1 , INF , 1 ] ,
[ INF , INF , INF , INF , 1 , INF , INF ] ,
[ INF , INF , 1 , INF , INF , INF , INF ] ,
[ INF , INF , 1 , INF , INF , INF , INF ] ,
[ 1 , INF , INF , INF , INF , 1 , INF ]
] )

Distances minimales :
0 1 2 3 4 5 6

0 4 4 2 1000 1 4 3
1 1 5 3 1000 2 2 1
2 2 2 2 1000 1 2 1
3 4 4 2 1000 1 4 3
4 3 3 1 1000 2 3 2
5 3 3 1 1000 2 3 2
6 1 4 2 1000 2 1 3

Graphe :

0

1
2

3

4

5
6

2

1

1

1

2

1

1

1

1

1

1

1

Chemins minimaux :
0 1 2 3 4 5 6

0 [0, 4, 2, 6, 0] [0, 4, 2, 1] [0, 4, 2] [] [0, 4] [0, 4, 2, 6, 5] [0, 4, 2, 6]
1 [1, 0] [1, 6, 5, 2, 1] [1, 6, 5, 2] [] [1, 0, 4] [1, 6, 5] [1, 6]
2 [2, 6, 0] [2, 1] [2, 4, 2] [] [2, 4] [2, 6, 5] [2, 6]
3 [3, 4, 2, 6, 0] [3, 4, 2, 1] [3, 4, 2] [] [3, 4] [3, 4, 2, 6, 5] [3, 4, 2, 6]
4 [4, 2, 6, 0] [4, 2, 1] [4, 2] [] [4, 2, 4] [4, 2, 6, 5] [4, 2, 6]
5 [5, 2, 6, 0] [5, 2, 1] [5, 2] [] [5, 2, 4] [5, 2, 6, 5] [5, 2, 6]
6 [6, 0] [6, 5, 2, 1] [6, 5, 2] [] [6, 0, 4] [6, 5] [6, 5, 2, 6]
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▶ On cherche donc :
L(i , j) = min

p∈Ci,j
L(p)

▶ On considère un chemin optimal reliant i à j , que l’on note :

p = (i0, . . . , is−1, is , is+1, . . . , il)

On extrait le sous-chemin (i0, . . . , is−1, is), alors ce chemin est optimal
pour relier i0 (ie i) à is , car si on pouvait améliorer cette partie du
trajet, on pourrait obtenir un meilleur chemin optimal pour relier i à j .

▶ De même, le sous-chemin (is , is+1, . . . , il) est optimal pour relier is à
il (ie j).

▶ On voit donc apparaître une structure de sous-problèmes optimaux.
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▶ On voit donc apparaître une structure de sous-problèmes optimaux.

Sylvain Pelletier Programmation dynamique PSI - LMSC 32 / 40



▶ On cherche donc :
L(i , j) = min

p∈Ci,j
L(p)

▶ On considère un chemin optimal reliant i à j , que l’on note :

p = (i0, . . . , is−1, is , is+1, . . . , il)

On extrait le sous-chemin (i0, . . . , is−1, is), alors ce chemin est optimal
pour relier i0 (ie i) à is , car si on pouvait améliorer cette partie du
trajet, on pourrait obtenir un meilleur chemin optimal pour relier i à j .

▶ De même, le sous-chemin (is , is+1, . . . , il) est optimal pour relier is à
il (ie j).

▶ On voit donc apparaître une structure de sous-problèmes optimaux.

Sylvain Pelletier Programmation dynamique PSI - LMSC 32 / 40



▶ On cherche donc :
L(i , j) = min

p∈Ci,j
L(p)

▶ On considère un chemin optimal reliant i à j , que l’on note :

p = (i0, . . . , is−1, is , is+1, . . . , il)

On extrait le sous-chemin (i0, . . . , is−1, is), alors ce chemin est optimal
pour relier i0 (ie i) à is , car si on pouvait améliorer cette partie du
trajet, on pourrait obtenir un meilleur chemin optimal pour relier i à j .

▶ De même, le sous-chemin (is , is+1, . . . , il) est optimal pour relier is à
il (ie j).

▶ On voit donc apparaître une structure de sous-problèmes optimaux.

Sylvain Pelletier Programmation dynamique PSI - LMSC 32 / 40



▶ On considère les ensembles
(
Ck

i ,j

)
(i ,j,k)∈[[0,n−1]]3

qui sont définis
comme l’ensemble (éventuellement vide) des chemins qui relient les
sommets i et j et dont tous les sommets intermédiaires sont dans
[[0, k − 1]].

▶ Ainsi, un chemin p = (i0, . . . , il) est dans Ck
i ,j lorsque :

i = i0, j = il , et ∀s ∈ [[1, l − 1]] , is ∈ [[0, k − 1]]
▶ Par convention :

(
C0

i ,j

)
est l’ensemble (éventuellement vide) des

arrêtes qui relient i à j .
De plus

(
Cn

i ,j

)
représente les chemins (quelconques) qui relient i à j .

▶ On note donc :
Lk(i , j) = min

p∈Ck
i,j

L(p)

Ainsi, Lk(i , j) est la longueur minimale d’un chemin qui relie i à j en
ne passant que par des sommets de [[0, k − 1]]. Par convention, ce
min est égal à +∞ si Ck

i ,j est vide.
▶ Ainsi, le problème initial revient à chercher le chemin de longueur

minimal dans
(
Cn

i ,j

)
ie de trouver Ln(i , j).
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Recherche d’une équation de Bellman

Considérons alors p = (i0, . . . , il) un chemin optimal permettant de relier i
à j en ne passant que par des sommets de [[0, k − 1]]. Ainsi, p ∈ Ck

i ,j et la
longueur de p est égale à Lk(i , j).
On a alors deux possibilités :
▶ Soit k − 1 n’est pas l’un des sommets intermédiaires
▶ Soit k − 1 est l’un des sommets intermédiaires

▶ Si k − 1 n’est pas l’un des sommets intermédiaires, p est en fait dans
Ck−1

i ,j .
▶ Dans ce cas :

Lk(i , j) = Lk−1(i , j)
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Considérons alors p = (i0, . . . , il) un chemin optimal permettant de relier i
à j en ne passant que par des sommets de [[0, k − 1]]. Ainsi, p ∈ Ck

i ,j et la
longueur de p est égale à Lk(i , j).
▶ si k − 1 est l’un des sommets intermédiaires, alors on peut écrire :

p =(i0, . . . , is−1, is , is+1, . . . , il) avec i0 = i , is = k − 1, et il = j

Le chemin p est ainsi la concaténation de p1 et p2, avec :
p1 = (i0, . . . , is−1, is)

et p2 = (is , is+1, . . . , il)
▶ p1 est un chemin qui relie i à k − 1 et p2 un chemin qui relie k − 1 à j .
▶ p1 et p2 sont optimaux et de plus ont leurs sommets intermédiaires

dans [[0, k − 2]] (ces chemins ne passent pas en cours de route par
k − 1).
Par définition de la longueur : L(p) = L(p1) + L(p2) comme il s’agit
de chemin optimaux, cela s’écrit :

Lk(i , j) = Lk−1(i , k − 1) + Lk−1(k − 1, j)
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Considérons alors p = (i0, . . . , il) un chemin optimal permettant de relier i
à j en ne passant que par des sommets de [[0, k − 1]]. Ainsi, p ∈ Ck

i ,j et la
longueur de p est égale à Lk(i , j).
On a alors deux possibilités :
▶ Soit k − 1 n’est pas l’un des sommets intermédiaires, et dans ce cas :

Lk(i , j) = Lk−1(i , j)
▶ Soit k − 1 est l’un des sommets intermédiaires et dans ce cas :

Lk(i , j) = Lk−1(i , k − 1) + Lk−1(k − 1, j)
▶ Comme l’une et une seules de ces possibilités se produit, cela donne la

relation :

Lk(i , j) = min
(
Lk−1(i , k − 1) + Lk−1(k − 1, j), Lk−1(i , j)

)
▶ Précisément, si c’est Lk−1(i , j) qui est inférieur, on n’a aucun intérêt

à passer par k − 1, sinon il faut concaténer un chemin minimal de
Ck−1

i ,k−1 (qui relie i et k − 1) et un chemin minimal de Ck−1
k−1,j (qui relie

k − 1 à j).
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Équation de Bellman

▶ Lk(i , j) est la longueur du chemin minimal qui relie i à j et dont tous
les sommets intermédiaires sont dans [[0, k − 1]].

▶ Si k = 0, alors
L0(i , j) = +∞ si i et j ne sont pas reliés,
et L0(i , j) = Wi,j si i et j sont reliés.

▶ On a un moyen de calculer les Lk(i , j)

Lk(i , j) = min
(
Lk−1(i , k − 1) + Lk−1(k − 1, j), Lk−1(i , j)

)
▶ On peut calculer les chemins minimaux : si c’est Lk−1(i , j) qui est

inférieur, on n’a aucun intérêt à passer par k − 1, sinon il faut
concaténer un chemin minimal de Ck−1

i ,k−1 et un chemin minimal de
Ck−1

k−1,j .
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Équation de Bellman

▶ Lk(i , j) est la longueur du chemin minimal qui relie i à j et dont tous
les sommets intermédiaires sont dans [[0, k − 1]].

▶ Si k = 0, alors
L0(i , j) = +∞ si i et j ne sont pas reliés,
et L0(i , j) = Wi,j si i et j sont reliés.

▶ On a un moyen de calculer les Lk(i , j)

Lk(i , j) = min
(
Lk−1(i , k − 1) + Lk−1(k − 1, j), Lk−1(i , j)

)
▶ On peut calculer les chemins minimaux : si c’est Lk−1(i , j) qui est

inférieur, on n’a aucun intérêt à passer par k − 1, sinon il faut
concaténer un chemin minimal de Ck−1

i ,k−1 et un chemin minimal de
Ck−1

k−1,j .
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Application de la formule de Bellman

L0(i , j) =Wi ,j + ou + ∞

Lk(i , j) = min
(
Lk−1(i , k − 1) + Lk−1(k − 1, j), Lk−1(i , j)

)

0

1

2

3

1

2

1

2

3

1
2

1
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Matrice d’adjacence :
W = a r r a y (

[ [ INF , 1 , 2 , INF ] ,
[ 1 , INF , 2 , INF ] ,
[ 3 , INF , INF , 1 ] ,
[ INF , 2 , 1 , INF ] ] )

Graphe :

0

1

2

3

1

2

1

2

3

1
2

1

Distances minimales :
0 1 2 3

0 2 1 2 3
1 1 2 2 3
2 3 3 2 1
3 3 2 1 2

Chemins minimaux :
0 1 2 3

0 [0, 1, 0] [0, 1] [0, 2] [0, 2, 3]
1 [1, 0] [1, 0, 1] [1, 2] [1, 2, 3]
2 [2, 0] [2, 3, 1] [2, 3, 2] [2, 3]
3 [3, 1, 0] [3, 1] [3, 2] [3, 2, 3]
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La suite en TP !
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