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La programmation dynamique est une technique permettant de
résoudre certaines classes de problémes de calcul de minimisation.

Un probleme de minimisation consiste a trouver :

rax)

avec E un ensemble « complexe » de grand cardinal et f une fonction.

On ne peut pas balayer simplement les éléments de E.

On va présenter deux exemples ou la programmation dynamique

s'applique, en essayant de dégager une structure générale.
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Description du probleme

» On imagine un systeme qui peut étre dans p états possibles = un
entier de [0, p — 1].

» On étudie ce systéme au temps ty, ..., ty. Entre deux temps
consécutifs, le systeme peut changer d'état. On a donc N transitions.

> Le colit de transition dépend du temps et de |'état de départ et
d’arrivée.
On note f(k,x,y) le colit pour passer de I'état x a I'état y entre le
temps ty et le temps tyy1.

» |l est possible que f(k,x, x) > 0, autrement dit que rester dans le
méme état x ait un colfit.

Le probleme de minimisation consiste a trouver une suite d’'états
X0, X1, - - - » XN qui minimise le co(t total :

N—-1
C(x0, .., xn) = Z (i, xi, Xi+1)
i=0

- = — = = =’
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to t1 to t3

On voit deux chemins minimaux de colit 9 : (1,2,2,0) et (1,2,0,2).
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» A chaque transitions on a p?
fleches , donc Np2 données.
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» A chaque transitions on a p?
fleches , donc Np2 données.

» On cherche le colit minimal et
un chemin de coiit minimal
dans ce graphe,
c'est-a-dire :

min C(x0y---yXn)
(x05---xn)E[0,p— 1]V
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» A chaque transitions on a p?
fleches , donc Np2 données.

» On cherche le colit minimal et
un chemin de coiit minimal
dans ce graphe,

c'est-a-dire :
min C(x0y---yXn)
(ol p-1]¥
ey ,
> llyap chemins (xo Xn) possibles, c’est fini mais trop gros

pour du temps de calcul raisonnable.
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» A chaque transitions on a p?
fleches , donc Np2 données.

» On cherche le colit minimal et
un chemin de coiit minimal
dans ce graphe,

c'est-a-dire :
min C(x0y---yXn)
(ol p-1]¥
ey ,
> llyap chemins (xo Xn) possibles, c’est fini mais trop gros

pour du temps de calcul raisonnable.

» On cherche une structure de sous-probleme optimal pour permettre
un calcul plus rapide.
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propriété de sous-probleme optimal

» Considérons pour k € [0, N] et x € [0,p — 1] :
k=2
ck(x) = min (Z (i, xi,xiy1) + f(k — 1,xk_1,x)>

XO,...,Xk71€|[07P_1]Ik i=0

= min kC(XO,---,kal,X)
X07'--7Xk—1e|[07p_1]l
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propriété de sous-probleme optimal

» Considérons pour k € [0, N] et x € [0,p — 1] :
k=2
ck(x) = min (Z (i, xi,xiy1) + f(k — 1,xk_1,x)>
Xo,...,Xk,;[E'[O,p—l]Ik =0

= min kC(XO,---,kal,X)
X07'--7Xk—1e|[07p_1]l

» C'est le colit du chemin minimal pour arriver au temps k a I'état x.
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propriété de sous-probleme optimal

» Considérons pour k € [0, N] et x € [0,p — 1] :
-2

k
ck(x) = min Z (i, xiy xiv1) + f(k —1,xk—-1,x)
Xo,...,Xk,;[E'[O,p—l]Ik =0
= min C(X0y -+ Xk—1,X)

X07'--7Xk—1e|[07p_1]lk
» C'est le colit du chemin minimal pour arriver au temps k a I'état x.

» Le colit cherché est min _cy(x).
XEl[O,pfll]
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propriété de sous-probleme optimal

» Considérons pour k € [0, N] et x € [0,p — 1] :
k=2
ck(x) = min (Z (i, xi,xiy1) + f(k — 1,xk_1,x)>

0, xk—1€[0,p—11% \ 720
= min . C(X0y -+ Xk—1,X)
X07'--7Xk—1e|[07p_1]l
» C'est le colit du chemin minimal pour arriver au temps k a I'état x.

» Le colit cherché est min _cy(x).
XEl[O,pfll]

» C'est le colit minimal des chemins minimaux de longueur N.
Autrement dit, on regarde pour tous les états d'arrivée, lequel est
atteint avec un chemin minimal le moins coliteux.
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Equation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Donc :

» co(x) = 0 pour tout x (c'est le colit pour partir du point x).
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Equation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Donc :

» co(x) = 0 pour tout x (c'est le colit pour partir du point x).

» On a une relation dite équation de Bellman :
Vk e [1,N], Vx € [0,p — 1],

c(x) = min (ck_1(y)+ f(k—1,y,x))
yellovp_lll
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Equation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Donc :

» co(x) = 0 pour tout x (c'est le colit pour partir du point x).

» On a une relation dite équation de Bellman :

Vk e [1,N], Vx € [0,p — 1],

c(x) = min (ck_1(y)+ f(k—1,y,x))
yellovp_lll

P> La programmation dynamique consiste a exploiter ce type de relation
de sous-problémes optimaux.
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Equation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Donc :

» co(x) = 0 pour tout x (c'est le colit pour partir du point x).

» On a une relation dite équation de Bellman :

Vk e [1,N], Vx € [0,p — 1],

c(x) = min (ck_1(y)+ f(k—1,y,x))
yellovp_lll

P> La programmation dynamique consiste a exploiter ce type de relation
de sous-problémes optimaux.

» On voir que I'on peut calculer les cx(x) par une boucle for en k ou
par récursivité.
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Equation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Donc :

» co(x) = 0 pour tout x (c'est le colit pour partir du point x).

» On a une relation dite équation de Bellman :

Vk e [1,N], Vx € [0,p — 1],

c(x) = min (ck_1(y)+ f(k—1,y,x))
yellovp_lll

P> La programmation dynamique consiste a exploiter ce type de relation
de sous-problémes optimaux.

» On voir que I'on peut calculer les cx(x) par une boucle for en k ou
par récursivité.

> Au concours : il faut étre capable de justifier cette relation et d'écrire
le programme correspondant.
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Justification de I'équation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

c(x) = min (ck_1(y)+ f(k—1,y,x))
y€|[0,p—1]|

> |l faut justifier :
Vy S [[Ovp_ 1]]7 Ck(X) < Ckfl(y) + f(k - 1?y7X)
et dy € [0,p — 1] ck(x) = ck—1(y) + f(k —1,y,x)

Sylvain Pelletier Programmation dynamique PSI - LMSC 8/40



Justification de I'équation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

Montrons :
c(x) = min (ck_1(y)+ f(k—1,y,x))
yelo,p—1]
> |l faut justifier :
Vy € [[Ovp - 1]]7 Ck(X) < Ckfl(y) + f(k - 17y7X)
et dy € [0,p — 1] ck(x) = ck—1(y) + f(k —1,y,x)
» La premiere ligne signifie : quelque soit I'état y du systeme au temps
k — 1 (prédécesseur de x), le colit minimal pour arriver a x au temps
k est inférieur ou égal au colit pour arriver a y suivi du coiit de la
transition de y vers x.
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Justification de I'équation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

Montrons :
c(x) = min (ck_1(y)+ f(k—1,y,x))
yelo,p—1]
> |l faut justifier :
Vy € [[Ovp - 1]]7 Ck(X) < Ckfl(y) + f(k - 17y7X)
et dy € [0,p — 1] ck(x) = ck—1(y) + f(k —1,y,x)
» La premiere ligne signifie : quelque soit I'état y du systeme au temps
k — 1 (prédécesseur de x), le colit minimal pour arriver a x au temps
k est inférieur ou égal au colit pour arriver a y suivi du coiit de la
transition de y vers x.
» Le deuxieme ligne signifie : le chemin minimal pour arriver a x était
déja optimal pour arriver a y.
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Justification de I'équation de Bellman

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

Montrons :
c(x)= min (ck-1(y)+f(k—1,y,x))

> |l faut justifier :
Vy €[0,p =11, c(x) < ck-a(y) + f(k —1,y,x)
et dy € [0,p — 1] ck(x) = ck-1(y) + f(k —1,y,x)
» La premiere ligne signifie : quelque soit I'état y du systeme au temps
k — 1 (prédécesseur de x), le colit minimal pour arriver a x au temps
k est inférieur ou égal au colit pour arriver a y suivi du coiit de la
transition de y vers x.
» Le deuxieme ligne signifie : le chemin minimal pour arriver a x était
déja optimal pour arriver a y.
» Non seulement on obtient ainsi la valeur de c,(x) mais aussi la valeur
d'un meilleur prédécesseur de x au temps k — 1, c'est I'un des y qui
réalise le minimum.
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Justification de I'équation de Bellman 1/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

VyE[[O,p ]] ( ) Ck— 1( )+f(k—1,y,X)

» Soit y € [0, p — 1], alors cx—1(y) est le coit d'un chemin minimal
(X0, .-, Xk—2,y) qui arrive au temps k — 1 en y.
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Justification de I'équation de Bellman 1/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

VyE[[O,p ]] ( ) Ck— 1( )+f(k—1,y,X)

» Soit y € [0, p — 1], alors cx—1(y) est le coit d'un chemin minimal
(X0, .-, Xk—2,y) qui arrive au temps k — 1 en y.

» Le chemin (xp,...,Xk_2,Y, x) arrive donc au temps k en x.
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Justification de I'équation de Bellman 1/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

v)/EII()7P ]] ( ) Ck— 1( )+f(k—1,y,X)

» Soit y € [0, p — 1], alors cx—1(y) est le coit d'un chemin minimal

(X0, .-, Xk—2,y) qui arrive au temps k — 1 en y.
» Le chemin (xp,...,Xk_2,Y, x) arrive donc au temps k en x.
» Son colit est :
k—3
Z f(i,xiyxit1) + F(k —2,x¢_2,y) + f(k—1,y,x)
i=1

:C(X()a s 7Xk727y) + f(k - 17Y7X)
=ck-1(y) + f(k=1,y,x)
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Justification de I'équation de Bellman 1/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

v)/EII()7P ]] ( ) Ck— 1( )+f(k—1,y,X)

» Soit y € [0, p — 1], alors cx—1(y) est le coit d'un chemin minimal

(X0, .-, Xk—2,y) qui arrive au temps k — 1 en y.
» Le chemin (xp,...,Xk_2,Y, x) arrive donc au temps k en x.
» Son colit est :
k—3
Z f(i,xiyxit1) + F(k —2,x¢_2,y) + f(k—1,y,x)
i=1

:C(X07~"7Xk*27y)+ f(k_ lvyvx)
=ck-1(y) + (k= 1,y,x)
» ce colit est inférieur au minimal donc cx(x) < ck—1(y) + f(k—1,y,x)
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

dy € HO,P_ 1]] Ck(X) = Ck—l(y)+f(k_ 1’y’X)

» considérons un chemin minimal qui arrive 3 x au temps k et on pose
y le prédécesseur de x. Ce chemin minimal est donc noté
(X07 s 7Xk—27.y7X)'
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

dy € HO,P_ 1]] Ck(X) = Ck—l(y)+f(k_ 1’y’X)

» considérons un chemin minimal qui arrive 3 x au temps k et on pose
y le prédécesseur de x. Ce chemin minimal est donc noté
(X0, - -+ s Xk—2, Y, X)-

> Le colit de chemin est donc :

ck(x) =D i, xi, xi41) + F(k = 2,362, y) + f(k = 1, y,x)
i=1

:C(X07"-7Xk—27y)+f(k_ 17an)
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
Montrons :

dy € HO,P_ 1]] Ck(X) = Ck—l(y)+f(k_ 1’y’X)

» considérons un chemin minimal qui arrive 3 x au temps k et on pose
y le prédécesseur de x. Ce chemin minimal est donc noté
(X0, - -+ s Xk—2, Y, X)-

> Le colit de chemin est donc :

ck(x) =D i, xi, xi41) + F(k = 2,362, y) + f(k = 1, y,x)

i=1
=C(x0,..-,Xk—2,y) + f(k—1,y,x)
» |l faut donc montrer que : C(xg, ..., xk—2,¥) = ck—1(y), c'est-a-dire
que (xo, ..., Xk—2,y) est un chemin minimal pour arriver en y au

temps k — 1.
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.
» Un chemin minimal est noté (xo, ..., Xk—2, Y, X).
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

» Un chemin minimal est noté (xo, ..., Xk—2, Y, X).

» |l faut donc montrer que : C(xp, ..., Xk—2,¥) = ck—1(y), c'est-a-dire
que (xo, ..., Xk—2,y) est un chemin minimal pour arriver en y au
temps k — 1.
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

» Un chemin minimal est noté (xo, ..., Xk—2, Y, X).

» |l faut donc montrer que : C(xp, ..., Xk—2,¥) = ck—1(y), c'est-a-dire
que (xo, ..., Xk—2,y) est un chemin minimal pour arriver en y au
temps k — 1.

» Par I'absurde, supposons qu'il existe une chemin (Xp, ..., Xx_2,y), de
colit strictement inférieur. On ajoute alors x et on a un chemin pour
arriver a x au temps k.
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

» Un chemin minimal est noté (xo, ..., Xk—2, Y, X).

» |l faut donc montrer que : C(xp, ..., Xk—2,¥) = ck—1(y), c'est-a-dire
que (xo, ..., Xk—2,y) est un chemin minimal pour arriver en y au
temps k — 1.

» Par I'absurde, supposons qu'il existe une chemin (Xp, ..., Xx_2,y), de
colit strictement inférieur. On ajoute alors x et on a un chemin pour
arriver a x au temps k.

» Or:

C()?(),... ,)N(k_2,y,X) = C(()?o,...,)?k_Q,y) + f(k— l,y,x)
<C(X07’~ '7Xk727.y) + f(k - 1,y,X) = Ck(X)

impossible car ck(x) est le colit minimal.
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Justification de I'équation de Bellman 2/2

ck(x) est le colit du chemin minimal pour arriver au temps k a I'état x.

» Un chemin minimal est noté (xo, ..., Xk—2, Y, X).

» |l faut donc montrer que : C(xp, ..., Xk—2,¥) = ck—1(y), c'est-a-dire
que (xo, ..., Xk—2,y) est un chemin minimal pour arriver en y au
temps k — 1.

» Par I'absurde, supposons qu'il existe une chemin (Xp, ..., Xx_2,y), de
colit strictement inférieur. On ajoute alors x et on a un chemin pour
arriver a x au temps k.

» Or:

C (X0, Xk2,¥,x) = C((X0y..-,%k_2,y)+ f(k—1,y,x)
<C(x0y---yXk—2,y) + f(k—1,y,x) = ck(x)
impossible car ck(x) est le colit minimal.
P Ainsi : le chemin minimal pour arriver a x est aussi minimal pour
arriver a son prédécesseur y et donc :
ck(x) = c—1(y) + f(k —1,y,x)
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co(x) =0 et pour k > 1 cx(x) = min,cpo p—1j(ck—1(y) + f(k = 1,y,x))
to t1 to t3
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co(x) =0 et pour k > 1 ck(x) = min,cpop—17(ck—1(y) + f(k = 1,y,x))

to t t t3

\ [ o | f | t | ts |
Etat 0 | 0(0) =0 | a(0) =1(0) | =(0)=6(2) | =0)=9(2)
état 1| c1(0)=0 | (1) =5(0) | &2(1) =6 (1) | e5(1) =12 (1)
état 2 | (0)=0 | a(2)=3(1) | 22)=7(2) | a@)=90)
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co(x) =0 et pour k > 1 ck(x) = min,cpop—17(ck—1(y) + f(k = 1,y,x))

to t t t3

\ [ o | f | t | ts |
Etat 0 | 0(0) =0 | a(0) =1(0) | =(0)=6(2) | =0)=9(2)
état 1| c1(0)=0 | (1) =5(0) | &2(1) =6 (1) | e5(1) =12 (1)
état 2 | (0)=0 | a(2)=3(1) | 22)=7(2) | a@)=90)

» On peut donc retrouver le colit du chemin minimal (9) et en
remontant les valeur qui réalisent ce minimum, on peut retrouver un
chemin minimal (1,2,2,0) ou (1,2,0,2).
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co(x) =0 et pour k > 1 ck(x) = min,cpop—17(ck—1(y) + f(k = 1,y,x))

to t t t3

\ [ o | f | t | ts |
Etat 0 | 0(0) =0 | a(0) =1(0) | =(0)=6(2) | =0)=9(2)
état 1| c1(0)=0 | (1) =5(0) | &2(1) =6 (1) | e5(1) =12 (1)
état 2 | (0)=0 | a(2)=3(1) | 22)=7(2) | a@)=90)

» On peut donc retrouver le colit du chemin minimal (9) et en
remontant les valeur qui réalisent ce minimum, on peut retrouver un
chemin minimal (1,2,2,0) ou (1,2,0,2).

» On peut coder de deux maniéres : par boucle for ou par récursivité.
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Calcul de chemin minimal de bas en haut

L'algorithme consiste donc a calculer la valeur de cx(x) pour chaque temps
k et chaque état x, et a conserver le meilleur prédécesseur a x au temps k
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Calcul de chemin minimal de bas en haut

L'algorithme consiste donc a calculer la valeur de cx(x) pour chaque temps
k et chaque état x, et a conserver le meilleur prédécesseur a x au temps k

» on initialise les valeurs ¢p(x) a 0.
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Calcul de chemin minimal de bas en haut

L'algorithme consiste donc a calculer la valeur de cx(x) pour chaque temps
k et chaque état x, et a conserver le meilleur prédécesseur a x au temps k

» on initialise les valeurs ¢p(x) a 0.

» pour chaque temps k et chaque état x on cherche |'état y qui
minimise cx—_1(y) + f(k — 1, y,x).
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Calcul de chemin minimal de bas en haut

L'algorithme consiste donc a calculer la valeur de cx(x) pour chaque temps
k et chaque état x, et a conserver le meilleur prédécesseur a x au temps k

» on initialise les valeurs ¢p(x) a 0.

» pour chaque temps k et chaque état x on cherche |'état y qui
minimise cx—_1(y) + f(k — 1, y,x).

» La valeur de ce minimum donne la valeur de ck(x), I'indice de ce

minimum (ie le y qui réalise ce minimum) est un des meilleurs
prédécesseurs a x au temps k.
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Calcul de chemin minimal de bas en haut

L'algorithme consiste donc a calculer la valeur de cx(x) pour chaque temps
k et chaque état x, et a conserver le meilleur prédécesseur a x au temps k

» on initialise les valeurs ¢p(x) a 0.

» pour chaque temps k et chaque état x on cherche |'état y qui
minimise cx—_1(y) + f(k — 1, y,x).

» La valeur de ce minimum donne la valeur de ck(x), I'indice de ce
minimum (ie le y qui réalise ce minimum) est un des meilleurs
prédécesseurs a x au temps k.

» Une fois que tout cela est fait, on calcule le meilleur état d'arrivée, ie
le x qui minimise cp(x).

Cet état est la derniére étape de notre chemin, ie xp.
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Calcul de chemin minimal de bas en haut

L'algorithme consiste donc a calculer la valeur de cx(x) pour chaque temps
k et chaque état x, et a conserver le meilleur prédécesseur a x au temps k

» on initialise les valeurs ¢p(x) a 0.

» pour chaque temps k et chaque état x on cherche |'état y qui
minimise cx—_1(y) + f(k — 1, y,x).

» La valeur de ce minimum donne la valeur de ck(x), I'indice de ce
minimum (ie le y qui réalise ce minimum) est un des meilleurs
prédécesseurs a x au temps k.

» Une fois que tout cela est fait, on calcule le meilleur état d'arrivée, ie
le x qui minimise cp(x).

Cet état est la derniére étape de notre chemin, ie xp.

» On considére le prédécesseur de xy qui est donc xy_1, puis on
remonte ainsi, jusqu'a xp. On peut ainsi reconstruire le chemin
(x0, - - ., xn) de colit minimal.
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» On utilise une liste C de longueur N 4+ 1, de listes de longueur p, de
couple (cout, etat).

Sylvain Pelletier Programmation dynamique PSI - LMSC 14 /40



» On utilise une liste C de longueur N 4+ 1, de listes de longueur p, de
couple (cout, etat).

» Ainsi, C[k][x] est donc un couple (cout, etat), avec cout un float
et etat un int. C'est le colit pour arriver en x au temps k ainsi que le
prédécesseur de x au temps k — 1.
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» On utilise une liste C de longueur N + 1, de listes de longueur p, de
couple (cout, etat).

» Ainsi, C[k][x] est donc un couple (cout, etat), avec cout un float
et etat un int. C'est le colit pour arriver en x au temps k ainsi que le
prédécesseur de x au temps k — 1.

» L'instruction :

[ C[k—1][y][0] + f(k—1, y, x) for y in range(p)]

permet de construire la liste des réels (cx—1(y) + f(k — 1, y, x)) pour
tous les états y.
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On utilise une liste C de longueur N + 1, de listes de longueur p, de
couple (cout, etat).

Ainsi, Clk][x] est donc un couple (cout, etat), avec cout un float
et etat un int. C'est le colit pour arriver en x au temps k ainsi que le
prédécesseur de x au temps k — 1.

L'instruction :

[ C[k—1][y][0] + f(k—1, y, x) for y in range(p)]

permet de construire la liste des réels (cx—1(y) + f(k — 1, y, x)) pour
tous les états y.

C'est sur cette liste que I'on calcule le minimum (valeur de cx(x)) et
I'indice du minimum (le meilleur prédécesseur de x).
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On utilise une liste C de longueur N + 1, de listes de longueur p, de
couple (cout, etat).

Ainsi, Clk][x] est donc un couple (cout, etat), avec cout un float
et etat un int. C'est le colit pour arriver en x au temps k ainsi que le
prédécesseur de x au temps k — 1.

L'instruction :

[ C[k—1][y][0] + f(k—1, y, x) for y in range(p)]

permet de construire la liste des réels (cx—1(y) + f(k — 1, y, x)) pour
tous les états y.

C'est sur cette liste que I'on calcule le minimum (valeur de cx(x)) et
I'indice du minimum (le meilleur prédécesseur de x).

On code a part une fonction minEtindmin qui prend en entrée une
liste de float et qui revoir un couple (valeur, indice) du minimum
de cette liste.
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On utilise une liste C de longueur N + 1, de listes de longueur p, de
couple (cout, etat).

Ainsi, Clk][x] est donc un couple (cout, etat), avec cout un float
et etat un int. C'est le colit pour arriver en x au temps k ainsi que le
prédécesseur de x au temps k — 1.

L'instruction :

[ C[k—1][y][0] + f(k—1, y, x) for y in range(p)]

permet de construire la liste des réels (cx—1(y) + f(k — 1, y, x)) pour
tous les états y.

C'est sur cette liste que I'on calcule le minimum (valeur de cx(x)) et
I'indice du minimum (le meilleur prédécesseur de x).

On code a part une fonction minEtindmin qui prend en entrée une
liste de float et qui revoir un couple (valeur, indice) du minimum
de cette liste.

Le chemin est stockée sous la forme d'une liste (xg, ..., xn). On
construit cette liste en partant de la fin.
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» Pour construire la liste C :

for k in range(1,N+1):
for x in range(p):
C[k][x] = minEtindmin(

C= 1 [ [0, None] for i in range(p)] for j in range(N+1)]

[ Clk=1][y][0] + f(k=1, y, x) for y in range(p)] )

» Pour calculer le colit minimal et le point d'arrivée :

cout, xN = minEtindmin ([ C[N][x][0] for x in range(p)]

)

» Pour reconstruire le chemin :

chemin = [None]*(N+1)

chemin[N] = xN

for i in range(N—1, —1, —1):
chemin[i] = C[i+1][chemin[i+1]][1]
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Complexité de I'algorithme :
» Pour chaque k dans [[1, N]|, Pour chaque x dans [0, p — 1],

» on calcule la liste :

[ C[k—1][y][0] + f(k—1, y, x) for y in range(p)]

ce qui fait p appel a f et p additions. Donc 2p opérations.

P on calcule le minimum, et l'indice du minimum de cette liste de
longueur p, ce qui fait p comparaisons (RAPPEL : une comparaison
est beaucoup plus rapide qu'une addition).

» il reste un dernier minimum a calculer soit p comparaison.
Cela fait donc ©(2 x p? x N) opérations au lieu de pN+1
Avec la méthode de programmation que I'on a mis en place ici, le coiit en
mémoire est élevé : on stocke un tableau de p x N couples. On peut
éventuellement, diminuer ce cofit en écrasant a chaque itération les valeurs
de cx(x).
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Calcul récursif du chemin minimal
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Calcul récursif du chemin minimal

> L'équation de Bellman cy(x) = minyco p—13(ck—1(y) + f(k = 1,y,x))
peut aussi se programmer de maniere récursive.
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Calcul récursif du chemin minimal

> L'équation de Bellman cy(x) = minyco p—13(ck—1(y) + f(k = 1,y,x))
peut aussi se programmer de maniere récursive.

» Cas trivial : kK =0 on renvoie [0, None], et si k > 0, on calcule la liste
des (ck—1(y) + f(k — 1,y,x)), on renvoie le minimum (le coiit) et
I'indice du minimum (le prédécesseur).
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Calcul récursif du chemin minimal

> L'équation de Bellman cx(x) = minycpo p—1j(ck—1(y) + f(k —1,y,x))
peut aussi se programmer de maniere récursive.

» Cas trivial : kK = 0 on renvoie [0, None], et si k > 0, on calcule la liste
des (ck—1(y) + f(k — 1,y,x)), on renvoie le minimum (le coiit) et
I'indice du minimum (le prédécesseur).

def C(k,x):
if k=0
return [0, None]
return minEtindmin ([ C(k—1,y)[0] + f(k—1, y, x)
for y in range(p)])

oyt

T (mid =
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Calcul récursif du chemin minimal

> L'équation de Bellman cx(x) = minycpo p—1j(ck—1(y) + f(k —1,y,x))
peut aussi se programmer de maniere récursive.

» Cas trivial : kK = 0 on renvoie [0, None], et si k > 0, on calcule la liste
des (ck—1(y) + f(k — 1,y,x)), on renvoie le minimum (le coiit) et
I'indice du minimum (le prédécesseur).

def C(k,x):
if k=0
return [0, None]
return minEtindmin ([ C(k—1,y)[0] + f(k—1, y, x)
for y in range(p)])

» Pour calculer ck(x), on a besoin de tous les cx_1(y), le nombre
d’'appels a la fonction récursive est trop important

T (mid — = e

Sylvain Pelletier Programmation dynamique PSI - LMSC 17 /40



Calcul récursif du chemin minimal

> L'équation de Bellman cx(x) = minycpo p—1j(ck—1(y) + f(k —1,y,x))
peut aussi se programmer de maniere récursive.

» Cas trivial : kK = 0 on renvoie [0, None], et si k > 0, on calcule la liste
des (ck—1(y) + f(k — 1,y,x)), on renvoie le minimum (le coiit) et
I'indice du minimum (le prédécesseur).

def C(k,x):
if k=0
return [0, None]
return minEtindmin ([ C(k—1,y)[0] + f(k—1, y, x)
for y in range(p)])

» Pour calculer ck(x), on a besoin de tous les cx_1(y), le nombre
d’'appels a la fonction récursive est trop important

» On refait sans cesse les mémes calculs! Il faut garder en mémoire les
résultats.

T (mid — = e
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Retour sur la récursivité

» Une fonction récursive est une fonction qui s'appelle elle-méme.
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Retour sur la récursivité

» Une fonction récursive est une fonction qui s'appelle elle-méme.

P Le principe est d'utiliser la récurrence : on sait résoudre le probleme
lorsque n = 0 (cas trivial), pour résoudre le probléme pour un n fixé,
on appelle la fonction pour n — 1.
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Retour sur la récursivité

» Une fonction récursive est une fonction qui s'appelle elle-méme.

P Le principe est d'utiliser la récurrence : on sait résoudre le probleme
lorsque n = 0 (cas trivial), pour résoudre le probléme pour un n fixé,
on appelle la fonction pour n — 1.

» Cela donne du code trés compact et permet d'écrire facilement du
code complexe.
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Retour sur la récursivité

v

Une fonction récursive est une fonction qui s'appelle elle-méme.

Le principe est d'utiliser la récurrence : on sait résoudre le probléme
lorsque n = 0 (cas trivial), pour résoudre le probléme pour un n fixé,
on appelle la fonction pour n — 1.

Cela donne du code trés compact et permet d'écrire facilement du
code complexe.

On prouve la terminaison et la correction d'un programme récursif en
écrivant : P(n) :« sur I'entrée n le programme se termine et donne le
bon résultat »
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Retour sur la récursivité

Une fonction récursive est une fonction qui s'appelle elle-méme.

v

P Le principe est d'utiliser la récurrence : on sait résoudre le probleme
lorsque n = 0 (cas trivial), pour résoudre le probléme pour un n fixé,
on appelle la fonction pour n — 1.

» Cela donne du code trés compact et permet d'écrire facilement du
code complexe.

» On prouve la terminaison et la correction d'un programme récursif en
écrivant : P(n) :« sur I'entrée n le programme se termine et donne le
bon résultat »

def fact(n):

if n = 0:

return 1
return fact(n—1)
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Exemple pour les tours de Hanoi

def hanoiRec(n, D, A,

entrée: n = int =
D= int =
A = int =
| = int =

sortiie : liste de

nnn

if n—=1

return : [ [D,A]

def resoud(n):

entrée: n = int =

return hanoiRec(n,

liste des déplacements a effectuer

return hanoiRec(n—1, D, I, A) + [[D,A]] + hanoiRec(n—1, |, A, D)

sortie: liste de couple de int de la forme (i,j)
liste des déplacements a effectuer

1):

nbr de disques a déplacer
indice de la tour de départ
arrivée
intermédiaire

couple de int de la forme (i,j)

]

nbr de disques a déplacer

1, 3, 2)
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Exemple pour le tri fusion

def tri(L):

entrée: L = list = liste a trier
sortie: L = la liste triée
nun
if len(L) <= 1:
return L

# tri des deux "moitiés" de liste
m = len(L) // 2
L1 = tri(L[:m])
L2 = tri(L[m:])

return fusion (L1, L2)
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Nombres d'appels récursifs

def fibbo(n):
if n— 0:
return 1
if n—=1
return 1
return fibbo(n—1) + fibbo (n—2)
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Nombres d'appels récursifs

def fibbo(n):
if n— 0:
return 1
if n—=1
return 1
return fibbo(n—1) + fibbo (n—2)

» On fait trop d'appels récursifs !
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Nombres d'appels récursifs

def fibbo(n):
if n— 0:
return 1
if n—=1
return 1
return fibbo(n—1) + fibbo (n—2)

» On fait trop d'appels récursifs !

> |l faut garder en mémoire les valeurs fibbo(n), on parle de
mémoisation.
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Nombres d'appels récursifs

def fibbo(n):
if n— 0:
return 1
if n—=1
return 1
return fibbo(n—1) + fibbo (n—2)

» On fait trop d'appels récursifs !

> |l faut garder en mémoire les valeurs fibbo(n), on parle de
mémoisation.

» Un dictionnaire est tres utile pour cela : si la valeur existe, on la
renvoie, sinon on la calcule et la stocke.
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Nombres d'appels récursifs

def fibbo(n):
if n = 0:
return 1
if n=1
return 1
return fibbo(n—1) + fibbo(n—2)

» On fait trop d'appels récursifs!

> |l faut garder en mémoire les valeurs fibbo(n), on parle de
mémoisation.

» Un dictionnaire est trés utile pour cela : si la valeur existe, on la
renvoie, sinon on la calcule et la stocke.

F=4{0:1, 1: 1 } # initialisation en dehors de la fonction
def fibbo(n):
if n not in F :
F[n] = fibbo(n—1) 4+ fibbo(n—2) # modification du dictionnaire
return F[n]
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Nombres d'appels récursifs

def fibbo(n):
if n = 0:
return 1
if n=1
return 1
return fibbo(n—1) + fibbo(n—2)

» On fait trop d'appels récursifs!

> |l faut garder en mémoire les valeurs fibbo(n), on parle de
mémoisation.

» Un dictionnaire est trés utile pour cela : si la valeur existe, on la
renvoie, sinon on la calcule et la stocke.

F=4{0:1, 1: 1 } # initialisation en dehors de la fonction
def fibbo(n):
if n not in F :
F[n] = fibbo(n—1) 4+ fibbo(n—2) # modification du dictionnaire
return F[n]

» Cette technique est a connaitre !
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Calcul récursif du chemin minimal
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Calcul récursif du chemin minimal

» Equation de Bellman c¢x(x) = minyeqo,p—17(ck—1(y) + f(k — 1, y,x))
peut aussi se programmer de maniére récursive avec la mémoisation.
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Calcul récursif du chemin minimal

» Equation de Bellman c¢x(x) = minyeqo,p—17(ck—1(y) + f(k — 1, y,x))
peut aussi se programmer de maniére récursive avec la mémoisation.

» On utilise donc un dictionnaire C indexé sur les tuples (k,x), le
dictionnaire contient le couple (cout, etat) .
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Calcul récursif du chemin minimal

» Equation de Bellman c¢x(x) = minyeqo,p—17(ck—1(y) + f(k — 1, y,x))
peut aussi se programmer de maniére récursive avec la mémoisation.

» On utilise donc un dictionnaire C indexé sur les tuples (k,x), le
dictionnaire contient le couple (cout, etat) .

» On crée une fonction récursive calculeC qui modifie le dictionnaire
et renvoie le couple C[(k,x)] -
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Calcul récursif du chemin minimal

> Equation de Bellman c(x) = minycpo p—1j(ck—1(y) + f(k — 1, y,x))
peut aussi se programmer de maniére récursive avec la mémoisation.

» On utilise donc un dictionnaire C indexé sur les tuples (k,x), le
dictionnaire contient le couple (cout, etat) .

» On crée une fonction récursive calculeC qui modifie le dictionnaire
et renvoie le couple C[(k,x)] -

» |l faut déterminer le meilleur état d'arrivée, ie le x qui minimise
cn(x), On appelle cette fonction récursive pour calculer C[(N,x)] pour
tous les x.
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Calcul récursif du chemin minimal

> Equation de Bellman c(x) = minycpo p—1j(ck—1(y) + f(k — 1, y,x))
peut aussi se programmer de maniére récursive avec la mémoisation.

» On utilise donc un dictionnaire C indexé sur les tuples (k, x), le
dictionnaire contient le couple (cout, etat) .

» On crée une fonction récursive calculeC qui modifie le dictionnaire
et renvoie le couple C[(k,x)] -

» |l faut déterminer le meilleur état d'arrivée, ie le x qui minimise
cn(x), On appelle cette fonction récursive pour calculer C[(N,x)] pour
tous les x.

> Cet état est la derniére étape de notre chemin, ie xy. Puis de
reconstruire le chemin (xp, ..., xy) de colt minimal.
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Fonction récursive :

c={}
for x in range(p):
C[(0,x)] = [0, None]

def calculeC(k,x):

fonction récursive qui remplit le dictionnaire
W

if (k,x) not in C:
C[(k,x)] = minEtindmin( [ calculeC(k—1,y)[0] + f(k—1, y, x) for y in range(p)] )
return C[(k,x)]

Appel de la fonction récursive et calcul du chemin :

# | "appel a la fonction récursive se fait ici:
for y in range(p):

calculeC(p,y)
cout, xN = minEtindmin ([ C[(p,y)][0] for y in range(N)] )
# on reconstruit le chemin complet
chemin = [None]x(N+1)
chemin [N] = xN
for i in range(N—1, —1, —1):

chemin[i] = C[( i+1, chemin[i+1]) ][1]
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On peut dégager une structure de problémes pouvant étre résolus par
programmation dynamique :
> |l s'agit de problemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de min,cg f(x) et le x qui réalise le
minimum. La fonction f est connue.
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On peut dégager une structure de probléemes pouvant étre résolus par
programmation dynamique :
> |l s'agit de probléemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de minycg f(x) et le x qui réalise le
minimum. La fonction f est connue. Dans notre exemple : le chemin
de colit minimal parmi tous les chemins possibles.
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On peut dégager une structure de problémes pouvant étre résolus par
programmation dynamique :
> |l s'agit de problemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de min,cg f(x) et le x qui réalise le
minimum. La fonction f est connue.

» On a plusieurs sous-problémes plus petits.
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On peut dégager une structure de probléemes pouvant étre résolus par
programmation dynamique :
> |l s'agit de probléemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de minycg f(x) et le x qui réalise le
minimum. La fonction f est connue.
» On a plusieurs sous-problémes plus petits. Dans notre exemple :
ck(x) le chemin de colit minimal a chacun des temps k.
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On peut dégager une structure de problémes pouvant étre résolus par
programmation dynamique :

> |l s'agit de problemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de min,cg f(x) et le x qui réalise le
minimum. La fonction f est connue.

» On a plusieurs sous-problémes plus petits.

> Le probléme initial est le plus gros des sous-problémes (le dernier), le
plus petit des sous-probléme admet une solution triviale.
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On peut dégager une structure de probléemes pouvant étre résolus par
programmation dynamique :
> |l s'agit de probléemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de minycg f(x) et le x qui réalise le
minimum. La fonction f est connue.
» On a plusieurs sous-problémes plus petits.
» Le probléeme initial est le plus gros des sous-problémes (le dernier), le
plus petit des sous-probleme admet une solution triviale. Dans notre
exemple, cp(x) = 0 pour tout x et on cherche miny cy(x).
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On peut dégager une structure de problémes pouvant étre résolus par
programmation dynamique :

> |l s'agit de problemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de min,cg f(x) et le x qui réalise le
minimum. La fonction f est connue.

» On a plusieurs sous-problémes plus petits.

> Le probléme initial est le plus gros des sous-problémes (le dernier), le
plus petit des sous-probléme admet une solution triviale.

» chevauchement des sous-probléme : Ces sous-problémes sont
entremélés.
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On peut dégager une structure de probléemes pouvant étre résolus par
programmation dynamique :
> |l s'agit de probléemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de minycg f(x) et le x qui réalise le
minimum. La fonction f est connue.
» On a plusieurs sous-problémes plus petits.
» Le probléeme initial est le plus gros des sous-problémes (le dernier), le
plus petit des sous-probleme admet une solution triviale.
» chevauchement des sous-probléme : Ces sous-probléemes sont
entremélés. Dans notre exemple : un chemin de colit minimal est
minimal a3 toutes les étapes.
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On peut dégager une structure de problémes pouvant étre résolus par
programmation dynamique :
> |l s'agit de problemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de min,cg f(x) et le x qui réalise le
minimum. La fonction f est connue.

» On a plusieurs sous-problémes plus petits.

> Le probléme initial est le plus gros des sous-problémes (le dernier), le
plus petit des sous-probléme admet une solution triviale.

» chevauchement des sous-probléme : Ces sous-problémes sont
entremélés.

» Un sous-probléme d'une taille donné se fait facilement en utilisant les
solutions des sous probléemes d’une taille plus petite. Cela se traduit
par une équation de Bellman que I'on peut voir comme une formule
de récurrence.
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On peut dégager une structure de problemes pouvant étre résolus par
programmation dynamique :
> |l s'agit de probléemes de minimisation : On a un ensemble E fini mais
trés grand et on cherche la valeur de minycg f(x) et le x qui réalise le
minimum. La fonction f est connue.

v

On a plusieurs sous-problémes plus petits.

> Le probléeme initial est le plus gros des sous-problémes (le dernier), le
plus petit des sous-probleme admet une solution triviale.

» chevauchement des sous-probléme : Ces sous-problémes sont
entremélés.

» Un sous-probleme d'une taille donné se fait facilement en utilisant les
solutions des sous problémes d’une taille plus petite. Cela se traduit
par une équation de Bellman que |I'on peut voir comme une formule
de récurrence.

Dans notre exemple : ck(x) = min,co p—17(ck—1(y) + f(k = 1,y,x)).
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Programmation dynamique

On peut utiliser la programmation dynamique de deux maniéres :

> Soit par programmation itérative (approche bas en haut) : on part du
sous-probléme le plus petit et on utilise une boucle for pour résoudre
des problémes de plus en plus gros.
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Programmation dynamique

On peut utiliser la programmation dynamique de deux maniéres :

> Soit par programmation itérative (approche bas en haut) : on part du
sous-probléme le plus petit et on utilise une boucle for pour résoudre
des problémes de plus en plus gros.

» La programmation itérative est surtout utile lorsque résoudre le sous
probléeme de taille k nécessite la résolution du probléme de taille kK — 1
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Programmation dynamique

On peut utiliser la programmation dynamique de deux maniéres :

> Soit par programmation itérative (approche bas en haut) : on part du
sous-probléme le plus petit et on utilise une boucle for pour résoudre
des problémes de plus en plus gros.

» La programmation itérative est surtout utile lorsque résoudre le sous
probléeme de taille k nécessite la résolution du probléme de taille kK — 1

P soit par programmation récursive : on utilise des appels récursifs.
On part alors du probléme le plus gros et on le découpe en
sous-probleme plus petit, jusqu'au probleme trivial.

Pour éviter les trop nombreux appels récursifs, on utilise la
mémoisation : on stocke les valeurs calculées dans un dictionnaire.
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Programmation dynamique

On peut utiliser la programmation dynamique de deux maniéres :

> Soit par programmation itérative (approche bas en haut) : on part du
sous-probléme le plus petit et on utilise une boucle for pour résoudre
des problémes de plus en plus gros.

» La programmation itérative est surtout utile lorsque résoudre le sous
probléeme de taille k nécessite la résolution du probléme de taille kK — 1

P soit par programmation récursive : on utilise des appels récursifs.
On part alors du probléme le plus gros et on le découpe en
sous-probleme plus petit, jusqu'au probleme trivial.

Pour éviter les trop nombreux appels récursifs, on utilise la
mémoisation : on stocke les valeurs calculées dans un dictionnaire.

P> La programmation récursive est surtout utile lorsqu'il n’est pas
nécessaire de résoudre tous les sous-probleme.
Exemple : quand le probleme initial est de taille n et nécessite de
résoudre les problémes pour tous les diviseurs de n.
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Deuxiéme exemple : algorithme de Roy-Floyd-Warshall

» On considére un graphe valué dont les sommets sont les entiers
[0,n — 1]. Il est représenté par sa matrice d'adjacence W.

W 400 siin'est pas relié aj
i?j = 1 - -
w;j  longueur de I'arc de i vers j
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Deuxiéme exemple : algorithme de Roy-Floyd-Warshall

» On considére un graphe valué dont les sommets sont les entiers
[0,n — 1]. Il est représenté par sa matrice d'adjacence W.

W 400 siin'est pas relié aj
i?j = 1 - -
w;j  longueur de I'arc de i vers j

» Soit i et j deux sommets. Un chemin qui relie i a j est une suite finie
de sommets reliés qui commence a i et finit a j. Autrement dit, c’est

une liste
p=(io,...,ij) avec ip =i et iy =

avec Vs € [0,/ — 1], w;, .., # +0o (chaque sommet est bien relié au

suivant).

On note de plus C;j I'ensemble des chemins de i a j.
-1

La longueur du chemin p = (ip, ..., ;) est :L(p) = Z wi,.i,,, Clest la
s=0

somme des longueurs des arrétes.
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» On considére un graphe valué dont les sommets sont les entiers
[0, n — 1]. Il est représenté par sa matrice d'adjacence W.
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» On considére un graphe valué dont les sommets sont les entiers
[0, n — 1]. Il est représenté par sa matrice d'adjacence W.
» Soit / et j deux sommets. Un chemin qui relie i a j est une suite finie
de sommets reliés qui commence a i et finit a j. Noté :
p=(ig,...,ij) avecip =ietij=j
On note de plus C;; I'ensemble des chemins de i a j.

-1
La longueur du chemin p = (ig,..., i) est :L(p) = Z Wi io 1
s=0
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» On considére un graphe valué dont les sommets sont les entiers
[0, n — 1]. Il est représenté par sa matrice d'adjacence W.

» Soit / et j deux sommets. Un chemin qui relie i a j est une suite finie
de sommets reliés qui commence a i et finit a j. Noté :
p=(ig,...,ij) avecip =ietij=j
On note de plus C;; I'ensemble des chemins de i a j.

-1
La longueur du chemin p = (ig,..., i) est :L(p) = Z Wi io 1
s=0

» On s'intéresse a la recherche du chemin le plus court entre deux
sommets i et j, ie la longueur la plus faible.
On cherche donc : L(i,j) = miCn L(p)
pe

i.J
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On considére un graphe valué dont les sommets sont les entiers
[0, n — 1]. Il est représenté par sa matrice d'adjacence W.

Soit / et j deux sommets. Un chemin qui relie i 3 j est une suite finie

de sommets reliés qui commence a i et finit a j. Noté :
p=(ig,...,ij) avecip =ietij=j

On note de plus C;; I'ensemble des chemins de i a j.

-1
La longueur du chemin p = (ip, ..., ;) est :L(p) = Z Wi io 1
s=0

On s'intéresse a la recherche du chemin le plus court entre deux
sommets i et j, ie la longueur la plus faible.
On cherche donc : L(i,j) = min L(p)

peCi;

Comme pour |'algorithme de Dijkstra mais pour tous les points de
départ i et d'arrivée j.
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Matrice d'adjacence :

W = array(
[[INF, 1, 2, INF],
[1, INF, 2, INF],
[3, INF, INF,1 ],
[INF, 2, 1,INF ]])

Graphe :
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Matrice d'adjacence :

Distances minimales :

W = array( ‘ ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘
[[INF, 1, 2, INF], 0/211]1213
[1, INF, 2, INF], 111121213
[3, INF, INF,1 ],
[INF, 2, 1,INF ]]) 213121212
3132112
Graphe : Chemins minimaux :
| o | 1 | 2 | 3
0] [0, 1, 0] [0, 1] [0, 2] [0, 2, 3]
1 [1, 0] [1, 0, 1] [1, 2] [1, 2, 3]
2 [2, 0] [2, 3, 11 | [2, 3, 2] [2, 3]
3113, 1, 0] [3, 1] [3, 2] [3, 2, 3]
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Matrice d'adjacence :

W = array (
[[INF, INF, 2, INF, 1 , INF,

INF],

[1, INF, INF, INF, INF , INF, 1],

[INF, 2, INF, INF, 1 , INF,

1],

[INF, INF, INF, INF, 1 , INF, INF],
[INF, INF, 1, INF, INF , INF, INF],

[INF, INF, 1, INF, INF, INF
[1, INF, INF, INF, INF, 1
D

, INF],

. INF]

Graphe :

2

@

1

e
‘\\\\\\\\\\\\\\Tiij—-#ﬂl
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Matrice d'adjacence :

W = array(

[[INF, INF, 2, INF, 1 , INF, INF],
1, INF, INF, INF, INF , INF, 1],
INF, 2, INF, INF, 1 , INF, 1],
INF, INF, INF, INF, 1 , INF, INF],
INF, INF, 1, INF, INF , INF, INF],
INF, INF, 1, INF, INF, INF , INF],
1, INF, INF, INF, INF, 1 , INF]
)

Distances minimales :

2 3

Chemins minimaux

[ 0 | 1 | 2 |3

4 5 | 6 |

1000 B ) o e B e R

R PR BN RN RN R B

2 2, 6, o 2, 11 2, 4, 21 0 2, 4 2, 6, 51 2, 61

o tool oob, | 803 3] &8 |0200,]0%0,

R e el L AN LR Rt

AN T N

I R R A L I R R

1000
1000
1000
1000
1000

H W w kNN RO

W NN WRFEF~H WS

NNNNNRFR RPN RS

AW w AN OB-

SOk W N RO
H wWwwsHDNDEE DS
N L, NN WN
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» On cherche donc :
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» On cherche donc :

£(i,j) = min L(p)
IJ

» On considére un chemin optimal reliant 7 a j, que I'on note :

P = (i07 .. ')isfla isa i5+17' ) I/)

On extrait le sous-chemin (ip, ..., is—1,is), alors ce chemin est optimal
pour relier iy (ie i) a is, car si on pouvait améliorer cette partie du
trajet, on pourrait obtenir un meilleur chemin optimal pour relier i a j.
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» On cherche donc :

£(i,j) = min L(p)
IJ

» On considére un chemin optimal reliant 7 a j, que I'on note :

P = (i07 .. ')isfla isa i5+17' ) I/)

On extrait le sous-chemin (ip, ..., is—1,is), alors ce chemin est optimal
pour relier iy (ie i) a is, car si on pouvait améliorer cette partie du
trajet, on pourrait obtenir un meilleur chemin optimal pour relier i a j.

» De méme, le sous-chemin (is, ist+1,- - -, /) est optimal pour relier is a
ir (ie j)-
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On cherche donc :

£(i,j) = min L(p)
IJ

On considére un chemin optimal reliant i a j, que I'on note :

P = (i07 .. ')isfla isa i5+17' ) I/)

On extrait le sous-chemin (ip, ..., is—1,is), alors ce chemin est optimal
pour relier iy (ie i) a is, car si on pouvait améliorer cette partie du
trajet, on pourrait obtenir un meilleur chemin optimal pour relier i a j.

De méme, le sous-chemin (s, is+1,- - ., i) est optimal pour relier is a
ir (ie j)-
On voit donc apparaitre une structure de sous-problémes optimaux.
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» On consideére les ensembles (C,-’J-)(. e[on1]
1,J,k)€(0,n—

comme |'ensemble (éventuellement vide) des chemins qui relient les
sommets /i et j et dont tous les sommets intermédiaires sont dans
[0, k —1].

qui sont définis
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On considere les ensembles (C,- ; , qui sont définis

’J)(i,j,k)6|[0,n—1]|
comme |'ensemble (éventuellement vide) des chemins qui relient les
sommets /i et j et dont tous les sommets intermédiaires sont dans
[0, k —1].
Ainsi, un chemin p = (ip, ..., ;) est dans C,-’fj lorsque :

i=1iy, j =1, etVsE[l,l—l]], is € [[O,k—].]]
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» On considere les ensembles (C,- ; , qui sont définis

d)(i,j,k)e|[o,n—1]|
comme |'ensemble (éventuellement vide) des chemins qui relient les
sommets /i et j et dont tous les sommets intermédiaires sont dans
[0, k —1].

» Ainsi, un chemin p = (ig,...,i) est dans C,-’fj lorsque :

i=1iy, j =1, etVsE[l,l—l]], is € [[O,k—].]]

» Par convention : (C&-) est I'ensemble (éventuellement vide) des
arrétes qui relient / a j.
De plus (C,”J) représente les chemins (quelconques) qui relient i a j.
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On considere les ensembles (C,-’J-)(. E[0.n—1]
1,/, ,Nn—

comme |'ensemble (éventuellement vide) des chemins qui relient les
sommets /i et j et dont tous les sommets intermédiaires sont dans
[0, k —1].
Ainsi, un chemin p = (ip, ..., ;) est dans C,-’fj lorsque :

i=1iy, j =1, etVsE[l,l—l]], is € [[O,k—].]]

Par convention : (C&-) est I'ensemble (éventuellement vide) des

, qui sont définis

arrétes qui relient / a j.
De plus (C,”J) représente les chemins (quelconques) qui relient i a j.

On note donc :

£4(i,j) = min L(p)
pGCiJ

Ainsi, £¥(i, ) est la longueur minimale d'un chemin qui relie i 4 j en
ne passant que par des sommets de [0, k — 1]]. Par convention, ce
min est égal a +oo0 si C,-’fj est vide.
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On considere les ensembles (C,-’J-)(. E[0.n—1]
1,/, ,Nn—

comme |'ensemble (éventuellement vide) des chemins qui relient les
sommets /i et j et dont tous les sommets intermédiaires sont dans
[0, k —1].
Ainsi, un chemin p = (ip, ..., ;) est dans C,-’fj lorsque :

i=1iy, j =1, etVsE[l,l—l]], is € [[O,k—].]]

Par convention : (C&-) est I'ensemble (éventuellement vide) des

, qui sont définis

arrétes qui relient / a j.
De plus (C,”J) représente les chemins (quelconques) qui relient i a j.

On note donc :

£4(i,j) = min L(p)
pGCiJ

Ainsi, £¥(i, ) est la longueur minimale d'un chemin qui relie i 4 j en
ne passant que par des sommets de [0, k — 1]]. Par convention, ce
min est égal a +oo0 si C,-’fj est vide.

Ainsi, le probléme initial revient a chercher le chemin de longueur
minimal dans (C,-’L-) ie de trouver L£"(i, ).
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Recherche d'une équation de Bellman

Considérons alors p = (ip, ..., ;) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]]. Ainsi, p € C,-’j/- et la
longueur de p est égale 3 £¥(i, ).

On a alors deux possibilités :

> Soit k — 1 n'est pas I'un des sommets intermédiaires
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Recherche d'une équation de Bellman

Considérons alors p = (ip, ..., ;) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]]. Ainsi, p € C,-’j/- et la
longueur de p est égale 3 £¥(i, ).
On a alors deux possibilités :

> Soit k — 1 n'est pas I'un des sommets intermédiaires

» Soit k — 1 est I'un des sommets intermédiaires
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Recherche d'une équation de Bellman

Considérons alors p = (ip, ..., ;) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]]. Ainsi, p € C,-’j/- et la
longueur de p est égale 3 £¥(i, ).
On a alors deux possibilités :

> Soit k — 1 n'est pas I'un des sommets intermédiaires

» Soit k — 1 est I'un des sommets intermédiaires

> Si k — 1 n'est pas I'un des sommets intermédiaires, p est en fait dans
cit
J
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Recherche d'une équation de Bellman

Considérons alors p = (ip, ..., ;) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]]. Ainsi, p € C,-’j/- et la
longueur de p est égale 3 £¥(i, ).
On a alors deux possibilités :

> Soit k — 1 n'est pas I'un des sommets intermédiaires

> Soit k — 1 est I'un des sommets intermédiaires
> Si k — 1 n'est pas I'un des sommets intermédiaires, p est en fait dans
ckt.
J

» Dans ce cas :

£4(i,j) = L7(iJ)
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Considérons alors p = (ip, . .., i) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [0, k — 1]. Ainsi, p € C,-’fj et la
longueur de p est égale 3 £L¥(i, ).

> si k — 1 est I'un des sommets intermédiaires, alors on peut écrire :

p:(io,...,is_l,is,is+1,...,i/) avec g =1, is=k—1,etij=j

Le chemin p est ainsi la concaténation de p; et py, avec :
pl = (i07 ctty iS—17 IS)
et pp = (is, is+1, RN i/)
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Considérons alors p = (ip, . .., i) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [0, k — 1]. Ainsi, p € C,-’fj et la
longueur de p est égale 3 £L¥(i, ).

> si k — 1 est I'un des sommets intermédiaires, alors on peut écrire :

p:(io,...,is_l,is,is+1,...,i/) avec g =1, is=k—1,etij=j

Le chemin p est ainsi la concaténation de p; et py, avec :
pr = (io,- - -, is—1,is)
et po = (is, ist1y- -, i1)
P p1 est un chemin qui relie i @ k — 1 et pp un chemin qui relie k—1 aj.
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Considérons alors p = (ip, . .., i) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [0, kK — 1]. Ainsi, p € C,-’fj et la
longueur de p est égale 3 £L¥(i, ).

> si k — 1 est I'un des sommets intermédiaires, alors on peut écrire :

p:(io,...,is_l,is,is+1,...,i/) avec g =1, is=k—1,etij=j

Le chemin p est ainsi la concaténation de p; et py, avec :
pr = (io,- - -, is—1,is)
et po = (is, ist1y- -, i1)
P p1 est un chemin qui relie i @ k — 1 et pp un chemin qui relie k—1 aj.
> p; et pp sont optimaux et de plus ont leurs sommets intermédiaires
dans [0, k — 2] (ces chemins ne passent pas en cours de route par
k —1).
Par définition de la longueur : L(p) = L(p1) + L(p2) comme il s'agit
de chemin optimaux, cela s'écrit :

L£5(iyj) = L0k — 1) + £ Yk - 1,))
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Considérons alors p = (ip, . . ., ij) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]|. Ainsi, p € C,-’fj et la
longueur de p est égale a L¥(i, ).

On a alors deux possibilités :

» Soit k — 1 n'est pas I'un des sommets intermédiaires, et dans ce cas :
LK(i,j) = LK1 (i, )
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Considérons alors p = (ip, . . ., ij) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]|. Ainsi, p € C,-’fj et la

longueur de p est égale a L¥(i, ).
On a alors deux possibilités :
» Soit k — 1 n'est pas I'un des sommets intermédiaires, et dans ce cas :
LK(i,j) = L1, ))
> Soit k — 1 est I'un des sommets intermédiaires et dans ce cas :
LK(ij) = LK (i k= 1) + LK1 (k= 1,))
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Considérons alors p = (ip, . . ., ij) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]|. Ainsi, p € C,-’fj et la
longueur de p est égale a L¥(i, ).
On a alors deux possibilités :
» Soit k — 1 n'est pas I'un des sommets intermédiaires, et dans ce cas :
LH(i,j) = L*(ij)
» Soit k — 1 est I'un des sommets intermédiaires et dans ce cas :
LK, j) = L0k — 1)+ LYk — 1,])
» Comme |'une et une seules de ces possibilités se produit, cela donne la
relation :

£K(i, ) = min (L1, k= 1) + £ (k= 1,)), £, )) )
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Considérons alors p = (ip, . . ., ij) un chemin optimal permettant de relier i
a j en ne passant que par des sommets de [[0, kK — 1]|. Ainsi, p € C,-’fj et la
longueur de p est égale a L¥(i, ).

On a alors deux possibilités :

» Soit k — 1 n'est pas I'un des sommets intermédiaires, et dans ce cas :
LK1 ) = L))

» Soit k — 1 est I'un des sommets intermédiaires et dans ce cas :
LK, j) = L0k — 1)+ LYk — 1,])

» Comme |'une et une seules de ces possibilités se produit, cela donne la
relation :

£K(i, ) = min (L1, k= 1) + £ (k= 1,)), £, )) )

» Précisément, si c'est £571(i, ) qui est inférieur, on n'a aucun intérét
a passer par k — 1, sinon il faut concaténer un chemin minimal de

Ckk 1 (q;u relie i et k — 1) et un chemin minimal de C; 1; (qui relie
k—1aj
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Equation de Bellman

» L£k(i,j) est la longueur du chemin minimal qui relie i 3 j et dont tous
les sommets intermédiaires sont dans [0, kK — 1].
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» L£k(i,j) est la longueur du chemin minimal qui relie i 3 j et dont tous
les sommets intermédiaires sont dans [0, kK — 1].
» Si k=0, alors
o L£°(i,j) = +oo si i et j ne sont pas reliés,
o et LO(i,j) = W, si i et j sont reliés.
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Equation de Bellman

» L£k(i,j) est la longueur du chemin minimal qui relie i 3 j et dont tous
les sommets intermédiaires sont dans [0, kK — 1].
» Si k=0, alors
o L£°(i,j) = +oo si i et j ne sont pas reliés,
o et LO(i,j) = W, si i et j sont reliés.

» On a un moyen de calculer les £¥(i, )

£K(7, ) = min (L1, k= 1) + £ (k = 1,)), £, )) )
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Equation de Bellman

» L£k(i,j) est la longueur du chemin minimal qui relie i 3 j et dont tous
les sommets intermédiaires sont dans [0, kK — 1].
» Si k=0, alors
o L£°(i,j) = +oo si i et j ne sont pas reliés,
o et LO(i,j) = W, si i et j sont reliés.

» On a un moyen de calculer les £¥(i, )
£5(7,g) = min (L4720 k = 1)+ £47H (k= 1)), £74(0.)))

» On peut calculer les chemins minimaux : si c'est £571(i, ) qui est
inférieur, on n’'a aucun intérét a passer par k — 1, sinon il faut
concatener un chemin minimal de C 11 et un chemin minimal de

Ck 1,j°
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Application de la formule de Bellman

L2(i,j) =W+ ou + o0
£K(i,j) =min (LK1, k= 1) + £ (k= 1,4), £47(1, ) )
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Matrice d'adjacence :

Distances minimales :

W = array( ‘ ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘
[[INF, 1, 2, INF], 0/211]1213
[1, INF, 2, INF], 111121213
[3, INF, INF,1 ],
[INF, 2, 1,INF ]]) 213121212
3132112
Graphe : Chemins minimaux :
| o | 1 | 2 | 3
0] [0, 1, 0] [0, 1] [0, 2] [0, 2, 3]
1 [1, 0] [1, 0, 1] [1, 2] [1, 2, 3]
2 [2, 0] [2, 3, 11 | [2, 3, 2] [2, 3]
3113, 1, 0] [3, 1] [3, 2] [3, 2, 3]
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